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Abstract
Even as data acquisition becomes increasingly inexpensive and deep learning becomes

more powerful, there is a bottleneck in the supervised learning pipeline of obtaining

high quality labels. With few labelled training data, the flexibility and power of neural

networks make them prone to overfitting. Deep semi-supervised learning attempts to

extend the power of neural networks to datasets with few labelled examples by extract-

ing information from much more cheaply acquired unlabelled examples.

We propose a new class of models for semi-supervised learning based on the lad-

der network and virtual adversarial training. We trained these models with 5, 10, or 100

labelled examples per class from the MNIST dataset, and evaluated performance on

both the standard test set and adversarial examples. We found that our models achieve

state-of-the-art performance and are additionally very stable in the 5- or 10-per-class

setting. Our ladder with layer-wise virtual adversarial noise (LVAN-LW) model in par-

ticular outperforms the ladder network on the MNIST test set and VAT on adversarial

examples generated with L1 and L2 norms.

ii



Acknowledgements
I would like to thank my supervisor, Gabriel Brostow, and the Prism group for their

advice during the process of working on this project. Many special thanks to Daniel

Worrall for his guidance, direction, and encouragement throughout the vicissitudes of

working on a deep learning thesis.

iii



Code
Code is available in the public repository at http://github.com/sakishinoda/

tf-ssl/

iv

http://github.com/sakishinoda/tf-ssl/
http://github.com/sakishinoda/tf-ssl/


Contents

1 Introduction 1

1.1 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Experiments and findings . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and related work 5

2.1 Foundations of semi-supervised learning . . . . . . . . . . . . . . . . . 5

2.2 Classical semi-supervised learning . . . . . . . . . . . . . . . . . . . . 7

2.3 Neural networks and deep learning . . . . . . . . . . . . . . . . . . . . 9

2.4 Deep semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . 18

3 Comparative analysis of ladder networks and virtual adversarial training 22

3.1 Ladder network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Virtual adversarial training . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Ladder, VAT, and the manifold hypothesis . . . . . . . . . . . . . . . . 32

3.4 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Virtual Adversarial Ladder Networks 35

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Ladder with virtual adversarial cost (LVAC) . . . . . . . . . . . . . . . 36

4.3 Ladder with virtual adversarial cost, layer-wise (LVAC-LW) . . . . . . 38

4.4 Ladder with virtual adversarial noise (LVAN) . . . . . . . . . . . . . . 38

4.5 Ladder with virtual adversarial noise, layer-wise (LVAN-LW) . . . . . . 38



5 Methodology 40

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Hyperparameter optimisation . . . . . . . . . . . . . . . . . . . . . . . 42

6 Experimental results and discussion 43

6.1 Performance on MNIST . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Defending against adversarial attacks . . . . . . . . . . . . . . . . . . . 47

6.3 Anisotropy of smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions and further work 52

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendices 54

A Hyperparameter settings 55

Bibliography 56

vi



List of Figures

2.1 Illustrations of (a) a single layer network and (b) a neural network with

one hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Conceptual illustration of an autoencoder architecture. . . . . . . . . . 23

3.2 Illustration of a ladder network architecture, showing the corrupted en-

coder, decoder, and clean encoder. . . . . . . . . . . . . . . . . . . . . 25

4.1 Conceptual illustrations of our proposed models, (a) ladder with virtual

adversarial cost (LVAC), (b) ladder with layer-wise virtual adversarial

cost (LVAC-LW), (c) ladder with virtual adversarial noise (LVAN), (d)

ladder with layer-wise virtual adversarial noise. . . . . . . . . . . . . . 37

6.1 Average Error Rate (%) on adversarial attacks with L∞ norm for mod-

els trained with 50, 100, 1000 labels. . . . . . . . . . . . . . . . . . . . 48

6.2 Effect of number of power iterations for computing the virtual adver-

sarial perturbation direction on the average error rate. . . . . . . . . . . 50



List of Tables

6.1 Benchmark average error rate (AER) on permutation-invariant MNIST. 44

6.2 Average error rate of our proposed models on MNIST with 50, 100 and

1000 labelled examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Training time per epoch in seconds, ranked by median time taken. . . . 46

6.4 Average error rate on adversarial examples with L∞ norm. . . . . . . . 49

6.5 Average error rate on adversarial examples with L1 norm. . . . . . . . . 49

6.6 Average error rate on adversarial examples with L2 norm. . . . . . . . . 49



List of Algorithms

2.1 Adam algorithm for stochastic optimisation . . . . . . . . . . . . . . . 14

3.1 Calculation of the output y and cost function C of the Ladder network . 27

3.2 Power method for approximating the dominant eigenvector of a matrix . 31



Chapter 1

Introduction

Semi-supervised learning is an active area of research within machine learning that

seeks to solve classification and regression problems using a small labelled dataset

supplemented by a much larger unlabelled dataset drawn from the same distribution.

Equivalently the dataset can be seen as many examples drawn from the distribution

of interest, but where only some of the examples are labelled. It seeks to reconcile the

traditional dichotomy of supervised learning on the labelled examples and unsupervised

learning on unlabelled examples. Here labelling refers to assigning a target value y,

discrete in the case of classification and continuous in the case of regression, to an

input data example x.

The semi-supervised learning paradigm is relevant to many real-world applica-

tions, where it may be easy or inexpensive to collect large amounts of data but expensive

or difficult to label all data. One example is medical imaging, where images themselves

can be readily acquired but features of interest, such as tumours, require a medical ex-

pert to manually annotate the images; for rare conditions, there may be very few people

capable of providing high-quality labels. Another example is labelling videos, where it

makes very little sense to annotate every frame no matter how easy labelling a single

frame is, given the similarity between neighbouring frames and the sheer quantity of

frames associated with a single video. The ease of acquiring data differs for each of

these examples, but the common thread is that labelling data is significantly more ex-

pensive than collecting it. In both of these cases, the aim of semi-supervised learning

would be to make use of the unlabelled images in learning the supervised task on the

labelled images.

To successfully carry out semi-supervised learning, one must solve two problems:



how to extract information from unlabelled examples, and how to assist a supervised

learner using the extracted information. Naively one might solve these two separately,

the former with unsupervised learning, and the latter with regularisation. This indeed

is an approach that has been taken both using classical methods and in deep learning.

However, the most successful methods usually rely on a simultaneous solution to both

of these problems, neither of which are trivial on their own.

1.1 Research goals
This thesis compares state-of-the-art deep learning methods for semi-supervised learn-

ing in the image classification domain. Our goal was to extend a theoretical under-

standing of deep methods in semi-supervised learning as regularisation through a com-

parative analysis of two end-to-end deep semi-supervised systems.

Based on our analysis we propose a class of new models combining elements

from the existing state-of-the-art ladder network and virtual adversarial training (VAT)

methods, which have differing theoretical approaches to the semi-supervised learning

problem. Combining these approaches allows us to exceed state-of-the-art performance

in certain tasks; by further exploring the circumstances under which each of these ap-

proaches is successful we are able to expand on our understanding of their regularisa-

tion mechanisms.

1.2 Background and related work
Semi-supervised learning requires that the unlabelled data provide information that

is relevant to the classification (or regression) task for which the labelled examples

are labelled, i.e., for data x with labels y, the knowledge we can obtain about Pr(x)

from unlabelled data must provide some additional information about Pr(y|x). Semi-

supervised learning thus depends upon a number of different assumptions about the

proximity of data points in input and output space which are discussed in Section 2.1.

Many early methods in semi-supervised learning are clearly motivated by one or a

combination of these assumptions, and are briefly reviewed in Section 2.2.

Recently, with the rapid development of deep learning, the field of semi-supervised

learning has become more empirical, favouring adaptation of successful techniques

from supervised and unsupervised deep learning. Deep learning refers to the use of
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artificial neural networks, typically fitted to data (‘trained’) using the backpropagation

algorithm and a variant of stochastic gradient descent. Regularisation is an important

aspect of any machine learning method, and a number of techniques have recently

been developed specifically for deep learning. Section 2.3 provides an overview of the

construction, training and regularisation of neural networks.

Some of the approaches in deep learning that have proven successful in semi-

supervised learning are embeddings, generative models, adversarial training, and regu-

larisation through random or local perturbations. These are reviewed in Section 2.4.

This thesis in particular builds directly on ladder networks [30] and virtual adver-

sarial training [23]. Ladder networks are a form of specialised generative model that

simultaneously carries out supervised learning on labelled examples using a classifi-

cation loss and unsupervised learning on unlabelled examples using a reconstruction

loss. Virtual adversarial training (VAT) regularises neural networks with perturbations

that most sharply shift the output probabilities of the model. These methods are further

described and analysed in Chapter 3.

1.3 Our contribution

Based on our analysis in Chapter 3, in Chapter 4 we propose a class of models that

build on the ladder network and virtual adversarial training (VAT):

Ladder with virtual adversarial cost (LVAC): applies virtual adversarial cost of lad-

der network output with respect to inputs.

Ladder with virtual adversarial cost, layer-wise (LVAC-LW): applies virtual ad-

versarial cost of ladder network output with respect to activations of every layer

in encoder.

Ladder with virtual adversarial noise (LVAN): adds a virtual adversarial perturba-

tion to the input images of the ladder network.

Ladder with virtual adversarial noise, layer-wise (LVAN-LW): adds a virtual ad-

versarial perturbation to activations of each layer in the encoder.

3



1.4 Experiments and findings
We tested the performance of the proposed models on the standard benchmarks of

MNIST image classification with 100 and 1000 labelled classes to allow direct com-

parison with the ladder network and VAT method on which the models are based. We

then further investigated the performance of the ladder network, VAT, and our proposed

models with only 50 labelled examples.

In addition to the standard measure of average error rate on a held-out test set, we

also considered the average error rate on adversarial examples generated using the fast

gradient method [12].

We confirmed the strength on the standard benchmarks of the ladder network,

which as published outperforms VAT. We found that our models outperform the ladder

network in accuracy and in stability for the cases with very few examples (5 per class,

10 per class). Additionally, we found that our models are highly robust to adversarial

attacks.

1.5 Further work
Many avenues of improvement and further work suggest themselves on the basis of

the results of this investigation and the hypotheses which could not be pursued due to a

lack of time. Given the opportunity, we would extend the work in this thesis by carrying

out more thorough hyperparameter optimisations to obtain more accurate and precise

estimates of our model performance.

We attempted, but did not have time to complete, evaluating our models on more

challenging datasets than MNIST, specifically SVHN and CIFAR-10, and extending

our models to work with convolutional networks. Another extension that was consid-

ered was to combine the ladder network with virtual adversarial training for unlabelled

examples and adversarial training for labelled examples.

Possible future investigations could examine the performance of not only our pro-

posed models but the base models of the ladder network and VAT on a dataset with more

than 10 classes, such as CIFAR-100. We would also like to see how the recently pro-

posed universal adversarial perturbations could be applied to semi-supervised learn-

ing.
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Chapter 2

Background and related work

2.1 Foundations of semi-supervised learning
This section provides a brief summary of relevant concepts in semi-supervised learning

(SSL). For a fuller exposition, the reader is referred to [6].

To understand semi-supervised learning, we first remind the reader of the formal-

isations of the two traditional paradigms of machine learning, supervised and unsuper-

vised learning.

In unsupervised learning, we have a dataset of n points X = (x1, ..., xn), where

we assume that the points are drawn from the same underlying data distribution Pr(x).

If we also assume that the points are drawn independently of each other we have the

common i.i.d. (independent and identically distributed) setting. Unsupervised learning

seeks structure in the data X . Tasks within unsupervised learning include estimating

the density Pr(x), dimensionality reduction, clustering, and anomaly detection.

The dataset in supervised learning comprises pairs of examples xi and the cor-

responding labels yi and the goal is to learn the mapping from x to y. Again, it is

commonly assumed that examples xi are i.i.d.. The performance of supervised learn-

ing algorithms is typically evaluated using predictions on unseen examples, whether

using accuracy, precision, recall, or other metrics of performance dependent on the

task.

The prediction problem in supervised learning can be formulated as estimating the

density Pr(y|x). By Bayes’ theorem, this can be written:

Pr(y|x) =
Pr(x|y) Pr(y)∫
y

Pr(x|y) Pr(y)
.



This gives rise to two approaches in supervised learning: generative, which seeks to

model the class-conditional density Pr(x|y); and discriminative, which directly esti-

mates Pr(y|x) without seeking to model how the data pairs are generated.

In the semi-supervised setting, the learning algorithm has access to unlabelled data

and some supervised information. Usually this is labels for a subset of the examples.

This is the standard setting for semi-supervised learning, though there are other forms

of partially supervised learning where the supervised information is not the labels them-

selves but some constraints that can be applied to unsupervised learning.

Within the standard semi-supervised learning setting, there is a further distinction

between transductive and inductive learning. Given a labelled training set and an unla-

belled ‘test’ set, the aim of transduction is to perform predictions on the test set. This

differs from the standard supervised case in that the algorithm can also learn from the

test set, though it does not have access to labels for those examples. By contrast, the

goal of induction is to model a general function to perform prediction on any example

drawn from the input space. Most classical methods of semi-supervised learning, sum-

marised in the next section, are transductive. Recent deep learning approaches, which

are reviewed in Section 2.4, are inductive.

Another paradigm that falls outside the realm of traditional supervised or unsuper-

vised learning is active learning, which also seeks to address the high cost of labelling

data relative to acquiring data. In active learning, also called query selection or experi-

ment design in the statistical literature, the algorithm has access to a pool of unlabelled

data, from which it selects examples to be labelled [38]. This is typically done by mod-

elling the uncertainty, risk, or cost the model associates with different data examples

and querying labels for examples so as to decrease the uncertainty, risk, or cost most.

Active learning thus aims to make the labelling process more efficient by optimising a

priori over the examples in the labelled dataset. In semi-supervised learning, the split

of the labelled and unlabelled examples must be considered fixed.

2.1.1 Assumptions of semi-supervised learning

The core assumptions of semi-supervised learning as stated in [6] can be paraphrased

as:

Smoothness assumption: if two points x1, x2 in a high-density region of input space
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are close, then the corresponding outputs y1, y2 should also be close.

Cluster assumption: if points are in the same cluster, they are likely to be of the same

class. Clusters can be considered regions of high-density, thus there is an equiv-

alent formulation of this assumption that decision boundaries between classes

should lie in low-density regions (principle of low density separation).

Manifold assumption: the (high-dimensional) data lie roughly on a low-dimensional

manifold. These manifolds can approximate high-density regions, and geodesic

distances on these manifolds can define the closeness of points as used in the

smoothness assumption.

2.2 Classical semi-supervised learning
This section very briefly outlines the methods of classical semi-supervised learning

based on each of the assumptions defined in the previous section, primarily to establish

a context against which we can compare the deep learning methods discussed in Section

2.4.

2.2.1 Generative models

As defined in Section 2.1, generative models estimate the conditional density Pr(x|y),

in which case any additional information about the marginal distribution Pr(x) pro-

vided by unlabelled data can be useful. Generative modelling can be thought to apply

the clustering assumption as the labels y are associated with different clusters. This can

be illustrated by example: if one assumes that Pr(x|y) is Gaussian, the expectation-

maximisation (EM) algorithm for mixture-of-Gaussians models can be applied with y

replacing the unknown hidden or latent variable for labelled examples [6].

2.2.2 Low density separation

Methods in this group are generally extensions of existing classifiers that use the cluster

assumption and push decision boundaries produced by the underlying classifier to low-

density regions.

The transductive support vector machine (TSVM) is an extension of the support

vector machine, a classic supervised learning algorithm, to the semi-supervised setting

by maximising the distance to decision boundaries for unlabelled as well as labelled

7



points [6, Ch. 6]. Gaussian processes, another classic and powerful supervised learn-

ing algorithm, can be extended to binary semi-supervised classification by introducing

a null class to label the space between regular classes [6, Ch. 8]. Entropy minimi-

sation encourages class-conditional probabilities Pr(y|x) to be close to either 1 or 0

for labelled and unlabelled points; this results in high-density areas having probabili-

ties close to 1 or 0 throughout the region, and lower probability regions correspond to

decision boundaries [6, Ch. 9]. Data-dependent regularisation based on entropy mul-

tiplies the L2 norm regulariser with a factor corresponding to data density at decision

boundaries, directly pushing boundaries to low density areas.[6, Ch. 10].

2.2.3 Graph-based methods

In graph-based semi-supervised learning, data are represented as a graph with exam-

ples as nodes and the pairwise distances between examples as weights on edges. This

can be considered to form an approximation of the manifold on which the data lies,

with the weighted shortest path between examples corresponding to a geodesic on that

manifold. Because of the discrete and finite representation of data as a graph, graph-

based methods are, without significant extension, necessarily transductive. Algorithms

such as label propagation and label spreading iteratively spread labels from the labelled

examples to unlabelled [3].

Graph regularisation methods use the graph to impose a smoothness penalty as

a term in the optimisation of the model. This is often based on the graph Laplacian,

a characteristic matrix of the graph which can be seen to represent the smoothness of

the graph. Penalising the Laplacian penalises changes in labels over short distances on

the graph, which corresponds to smoothing the manifold the graph approximates, as is

consistent with the assumptions stated in Section 2.1.1.

2.2.4 Change of representation

Another group of methods in classical semi-supervised learning involve two steps. The

first is an unsupervised step to map the examples to a new space with desirable prop-

erties. In the second step, a supervised learning carries out classification in the new

feature space. The change of representation, which may also be a change of metric or

change of kernel, should ideally emphasise the smoothness and clustering properties of

the data distribution [6].
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2.3 Neural networks and deep learning
Neural networks are essentially functions with many parameters created through the

composition of many smaller functions, largely affine transformations and non-linear

functions. This section is based on the content presented in [27].

2.3.1 Basic components

The simplest but possibly most commonly used building block is the linear layer, also

called fully connected or dense layers. The linear layer is an affine transformation that

can be described by the matrix-vector operation

y = Wx + b

for vectors x,y,b and matrix W. W contains the weights of the layer and the b the

biases. Each element of the output vector y is a weighted sum of the elements of the

input, shifted by the bias, i.e., yi =
∑

jWijxj + bi. From this form we can see that a

linear layer is simply equivalent to linear regression.

Linear layers are typically followed by an activation function, also called a non-

linearity. Common activation functions include the sigmoid function

σ(x) =
1

(1 + e−x)
,

the Rectified Linear Unit (ReLU)

y(x) = maximum(0, x),

and leaky ReLU (LReLU)

y(x) = maximum(αx, x), α ≤ 1.

The sigmoid function is also called a rescaling function as it maps all inputs to

[0, 1]; this is a useful property as it can be used to model probabilities, for example the

probability of example x belonging to a class y. In fact, a linear layer followed by a

sigmoid can be written

y = σ

(∑
i

wixi + b

)
for a scalar output y, which is equivalent to logistic regression.
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Figure 2.1: Conceptual illustrations of basic neural networks.

x y

W

(a) Representation of a single layer network

y = Wx with inputs x, outputs y, weights

W.

x y

h

W1 W2

(b) Representation of a network with one hid-

den layer, y = W2 (W1x) with inputs x,

outputs y, weights W1,W2. h is the hidden

layer.

Thus a linear layer composed with a sigmoid function can be used for binary

classification. A generalisation of the sigmoid function that can allow multi-class clas-

sification is the softmax function, which has vector-valued output y with elements

yi =
exi∑K
k=1 e

xj
.

Elements of y are non-negative and sum to one, so the vector y can be interpreted as a

categorical probability distribution over the K indices of y.

A softmax function is often applied at the ‘end’ of a multi-class classification

model and represents the predictive distribution of the model. For an input x, a vector y

is output by the model where yi denotes the probability under the model of the example

x being labelled as class i, Pr(y = i|x). We can compute the negative log-likelihood

(NLL) of the true label under the model using a ‘one-hot’ target vector t with ti = 1

for the true class i and ti = 0 otherwise:

NLL(t,y) = −
C∑
i=1

ti log yi.

This is also called the (softmax) cross-entropy.

Hidden layers extend neural networks beyond linear and logistic regression. Lin-

ear and logistic regression can be seen as single-layer networks, consisting of one lin-

ear/affine transformation followed by a non-linearity. Inputs are mapped by one trans-

formation to outputs. Networks with hidden layers map inputs to intermediate repre-
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sentations; the term hidden refers to any layer that does not take as its input the inputs

to the network x or produce as output the outputs of the network y. Figure 2.1a and

2.1b illustrate a single-layer network and network with one hidden layer respectively.

A network with a single hidden layer can be written as:

h = φ1(W1x + b1)

y = φ2(W2h + b2)

where φi are activation functions. W1,b1, φ1 correspond to the first layer of the net-

work and W2,b2, φ2 to the second.

In the example above, the dimensionality of the weight matrix W1 determines the

dimensionality of the hidden representation h. Multiplication of a m × n matrix by

a p × q matrix requires n = p and produces a product with dimension m × q. Thus

if the weight matrix W1 has dimensions m × n, m must match the dimensionality of

the inputs, and n is the dimensionality of the hidden layer. n is the number of neurons

or units in the hidden layer. Networks consisting of only fully-connected layers and

activations are called feedforward networks or multilayer perceptrons (MLP).

By transforming inputs to an intermediate representation rather than directly to the

outputs, a neural network with hidden layers has immense flexibility; it has been shown

that neural networks with only one hidden layer are ‘universal function approximators’

[26]. In practice this means that neural networks can model highly complicated, non-

linear functions.

2.3.2 Learning in neural networks

As applied to neural networks, the process of fitting model parameters to data is typi-

cally called training or learning. To train a neural network, we define a function of the

data and the model parameters called the loss, cost, or objective function. The model is

then trained by minimising the loss with respect to the model parameters. This minimi-

sation is typically carried out using iterative optimisation methods, particularly variants

of gradient descent. This section is based on [27] and [33].

2.3.2.1 Backpropagation

Gradient descent is used for neural network optimisation because the gradients of the

loss function of a neural network with respect to its parameters can be computed ef-

11



ficiently using the backpropagation algorithm. As a neural network can be written as

nested function compositions, the chain rule of derivatives

y = f(g(x)) =⇒ dy

dx
=

df

dg

dg

dx

or for the multivariate case

y = f
(
g(1)(x), . . . , g(m)(x)

)
=⇒ ∂y

∂x
=

i=m∑
i=1

∂f

∂g(i)
∂g(i)

∂x

can be used to efficiently combine modular derivatives. To do this, a compute graph is

constructed with each module as a node; message passing algorithms on the compute

graph can be used to calculate the full derivative efficiently. Traversing the graph from

inputs to outputs is called forward mode automatic differentiation. Traversing back-

wards from outputs to inputs is called reverse mode automatic differentiation, or more

commonly, backpropagation or backprop.

The modular nature of the backpropagation algorithm means that a neural network

can be constructed of any module f(x) with three functions: firstly, return output y

given input x (forward propagation),

y = f(x);

secondly, compute gradient of loss with respect to inputs ∂L/∂xi, given gradient of

loss with respect to outputs ∂L/∂yi (backpropagation),

∂L

∂xi
=

J∑
j=1

∂L

∂yj

∂yj
∂xi

;

thirdly, compute gradient of loss with respect to parameters ∂L/∂θi given gradient with

respect to outputs ∂L/∂yi,
∂L

∂θi
=

J∑
j=1

∂L

∂yj

∂yj
∂θi

.

2.3.2.2 Gradient descent

The basic principle behind optimisation by gradient descent is to iteratively follow

the direction of steepest downward gradient, since the derivative, i.e., gradient, of a

function is zero at a minimum.

The simplest form of gradient descent is batch gradient descent, where each gra-

dient step is computed on all data. For loss function J on a model with parameters θ,

12



the update rule is given by

θ ← θ − η∇θJ(θ),

where η is the learning rate or step size, a training hyperparameter that controls the

magnitude of the updates applied and hence how quickly optimisation proceeds.

In online gradient descent, updates are computed on individual examples xi, yi:

θ ← θ − η∇θJ(θ;x(i); y(i)).

Batch gradient descent is guaranteed to converge to a minimum but is slow and can

carry out redundant computations; online gradient descent is fast but has high variance,

causing significant fluctuations. To overcome these shortcomings, minibatch gradient

descent is most commonly used. In minibatch gradient descent, n samples from the

dataset are used to compute the update:

θ ← θ − η∇θJ(θ;x(i:i+n); y(i:i+n)).

We use stochastic gradient descent (SGD) to refer to the minibatch setting.

2.3.2.3 Momentum

SGD can often overshoot and oscillate where the curvature of the objective function

varies significantly in different directions; this often occurs around local minima, which

are the target of optimisation by gradient descent. Momentum dampens these oscil-

lations by increasing updates in dimensions with consistent gradient directions over

updates. The parameter update with momentum is defined as

vt = γvt−1 + η∇θJ(θ)

θ ← θ − vt,

where γ ∈ [0, 1) is the momentum coefficient, usually set to 0.9.

Nesterov momentum is a popular version of momentum with stronger convergence

guarantees for convex optimisation problems and which works well in practice for neu-

ral network training. It uses an approximation of the next position of parameters in

computing the update. The parameter update is given by

vt = γ vt−1 + η∇θJ(θ − γvt−1)

θ ← θ − vt
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2.3.2.4 Adaptive gradient methods

Most recent optimisation methods used for training neural networks use momentum and

additionally adaptive learning rates for different dimensions. Such methods include

AdaGrad, RMSProp, and Adam, which we use in this work. Adam, introduced by

Kingma and Ba in [14], estimates the first and second moments of the gradients to

adapt learning rates for each parameter. The algorithm for Adam is given in 2.1.

Algorithm 2.1 Adam algorithm for stochastic optimisation. Source: [14]
Require: η: Stepsize

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: f(θ): Stochastic objective function with parameters

Require: θ0: Initial parameter vector

m0 ← 0 (Initialize 1st moment vector)

v0 ← 0 (Initialise 2nd moment vector)

t← 0 (Initialise timestep)

while θt not converged do

t← t+ 1

gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)

mt ← β1 ·mt−1 + (1− β2) · g (Update biased first moment estimate)

vt ← β1 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)

m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)

θt ← θt−1 − η · m̂t/(
√
v̂t + ε) (Update parameters)

end while

return θt (Resulting parameters)

2.3.2.5 Initialisation

Stochastic gradient descent and the training of neural networks is highly sensitive to

the initialisation of the weights. Given the number of parameters in a neural network,

which can easily be in the tens of thousands, they are most easily initialised by sam-

pling randomly; the researcher controls the initialisation by specifying the parameters

of the distribution to sample the initialisations from. In particular architectures there

are specific initialisations which are theoretically or empirically motivated, but in gen-

14



eral a normal or uniform distribution close to zero is used. One initialisation scheme

which is commonly used is the Xavier or Glorot initialisation scheme, which aims to

keep gradients from shrinking or growing too quickly as they propagate through layers,

to maintain a steady training signal [7]. The Glorot initialisation for a layer with nin

connections into the layer and nout connections out is either a zero-mean Gaussian with

variance

Var(W ) =
2

nin + nout

or a uniform distribution bounded by ±
√

Var(W ).

2.3.2.6 Hyperparameter optimisation

An important and yet under-documented part of the deep learning pipeline is hyper-

parameter optimisation and model selection. Hyperparameters which are commonly

tuned include the distribution for random weight initialisation; learning rate, momen-

tum and other optimiser parameters; schedule of decay for learning rates; strength of

regularisation (see Section 2.3.5); and other, often model-specific, parameters. It is

common practice to carry out grid searches, with the range of the grid determined by

researchers’ prior beliefs, or random searches for high–dimensional hyperparameter

spaces as suggested by Bergstra and Bengio in [4].

2.3.3 Batch normalisation

Batch normalisation, introduced by Ioffe and Szegedy in [13], significantly accelerates

and stabilises training of neural networks. The nonlinearities used in neural networks

have saturation regimes, usually for very large or very small inputs, where gradients

tend to zero. This is the so-called vanishing gradient problem, which is particularly

pronounced in very deep networks due to internal covariate shift whereby the effect

of stacked layers is to amplify shifts of activations into saturation regimes. Ioffe and

Szegedy hypothesised that stabilising the distribution of inputs to each layer would

reduce this shift and accelerate training.

The principle of batch normalisation is inspired by whitening which is usually a

preprocessing step on images. Each dimension of the input x is centred to zero and

normalised to unit standard deviation to give x̂:

x̂k =
xk − E [xk]√

Var [xk]
,

15



where the expectation and variance are computed over the whole training data.

The key to batch normalisation is to approximate this whitening operation for

each layer using the mean and variance statistics of the minibatch used for minibatch

gradient descent. The batch normalisation operation is further parametrised by trainable

parameters γ and β, which rescale and shift the batch-whitened inputs. The procedure

at training time is as follows:

µB ←
1

m

m∑
i=1

xi

σ2
B ←

1

m

m∑
i=1

(xi − µB)2

x̂i ←
xi − µB√
σ2
B + ε

yi ← γx̂i + β ≡ BNxiγ, β

At testing time, the outputs should depend deterministically on the inputs and not

be affected by the selection of examples in the testing batch; indeed, testing should

be possible with any number, including only one, of examples at a time. Thus mini-

batches are batch-normalised using not the batch statistics but estimates of the popu-

lation statistics accumulated during training. These estimates are typically weighted

moving averages of the batch statistics during training.

2.3.4 Architectures

Whereas historically machine learning relied heavily on feature engineering, neural

networks learn the most salient features directly from the data. It could be argued that

feature engineering is replaced in deep learning by architecture engineering, in which

individual layers and overall structure of networks are designed using priors about the

data and the task.

Convolutional layers are a simple example at the layer level, which use priors on

the structure of image data: that images are localised and invariant to spatial translations

[9, Ch. 9]. Another commonly used component with architecture strongly informed by

priors about data are recurrent neural networks for sequence data [9, Ch. 10]. At the

scale of whole networks, architectures can be specialised to varying degrees. Autoen-

coders, which are discussed in greater detail in Section 3.1.1, rely on their structure to
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carry out unsupervised learning.

2.3.5 Regularisation for neural networks

Generalisation refers to the ability of a model fitted to some training set to perform

well, according to some metric, on previously unseen data, e.g., a held-out test set.

Regularisation techniques aim to reduce this test error, often at the expense of increased

training set error.

Many traditional regularisation techniques limit the capacity of models by adding

a penalty term proportional to a norm of the parameters to the optimisation objective.

Such penalty terms easily extend from classic machine learning techniques such as

linear regression to neural networks. When the penalty is with an L2 norm, this corre-

sponds to Tikhonov regularisation, ridge regression, or in deep learning, weight decay.

Bishop showed in [5] that perturbing inputs with Gaussian noise during training

of neural networks is equivalent to regularisation with an L2 penalty. Many methods of

regularising neural networks have since been developed that take advantage of stochas-

tic perturbations in other ways. Adding Gaussian noise to inputs or hidden layers has

been to some extent replaced by dropout [40], where only a randomly selected subset of

units in the neural network are used for each parameter update. Input units are typically

included with probability 0.8, hidden units with 0.5 [9]. Dropout can be considered an

extension of bagging, whereby many models are trained and used for prediction on

each test example, to neural networks, where the time and resources needed to train

a single model make traditional bagging prohibitively expensive. Dropout effectively

ensembles many sub-networks of the base model.

Another form of perturbations that are used to regularise neural networks, par-

ticularly in computer vision, is data augmentation. Images in the training data are

transformed in ways under which their labels are invariant, e.g., cropping or rotating,

and the transformed images are used as additional training examples. This can be seen

as incorporating a prior about the structure of the data and invariances in the underlying

distribution [9]. The augmentations can also be randomised, which adds stochasticity

to the perturbation process.

Adversarial perturbations have also been successfully used for regularisation. Ad-

versarial training (AT) originates in the observation that many deep neural network
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classifiers, though often made robust to small random perturbations by the methods

above, remain highly sensitive to certain directions, i.e., a small perturbation of the in-

put in a so-called adversarial direction can cause a model to misclassify an example

[41]. Such adversarial attacks have been studied as a vulnerability of neural networks,

but their study has yielded some insights into methods of regularisation by increasing

robustness to these examples, as explored in [12].

There is a close connection between regularisation and semi-supervised learn-

ing, which becomes apparent when examining the deep semi-supervised learning tech-

niques described in the next section.

2.4 Deep semi-supervised learning
Results obtained by many of the papers mentioned in this section are shown in Table

6.1 in Chapter 6.

Supervised learning with neural networks has been very successful on image clas-

sification and other computer vision tasks, but deep learning generally requires very

large amounts of data to learn. The challenge of extending the successes in deep super-

vised learning to semi-supervised is thus to regularise the models by somehow using

unlabelled data.

One approach to deep semi-supervised learning (SSL) is training feedforward clas-

sifiers in the supervised paradigm, but with an auxiliary loss, a penalty from an unsu-

pervised embedding of the data [44]. An embedding, a term common in deep learning

literature for the change of representation of data to useful features spaces previously

described in Section 2.2, can be learnt using unsupervised architectures, e.g., autoen-

coder, or specialised loss functions based on similarities, e.g., triplet loss [36].

A specialised architecture for semi-supervised learning based on the autoencoder

and which uses a form of auxiliary loss is the ladder network [42, 30]. Autoencoders

are a class of unsupervised learning architectures that aim to learn a useful mapping

to a representation (also called a latent code) in an encoder network by optimising a

reconstruction loss on the outputs from that representation in a decoder, i.e., the whole

encoder-decoder structure aims to minimise the loss in copying the input to the out-

put by learning a useful intermediate representation. Autoencoders are discussed in

further detail in Section 3.1.1. The ladder network combines a feedforward classifier
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to compute supervised loss on labelled examples and an autoencoder architecture to

compute a reconstruction cost for unlabelled examples at every layer of the encoder.

The ladder network is one of two methods that forms the basis of this work, and is

discussed in detail in Section 3. After Rasmus et al. introduced the ladder network for

semi-supervised learning in [30], Pezeshki et al. analysed it in detail in [29] and were

able to achieve slightly better performance using a small multilayer perceptron as the

denoising function.

Recent advances in generative modelling using neural networks has fuelled a

resurgence of generative models for semi-supervised learning. One category of gen-

erative models used in SSL are the deep generative networks introduced by Kingma

et al. in [15] (DGM) and further developed as the Auxiliary Deep Generative Model

(ADGM) and Skip Deep Generative Model (SDGM) by Maaløe et al. in [19], which

approach semi-supervised learning as a label imputation problem on unlabelled ex-

amples using variational inference on latent variable models. In deep generative net-

works, probability distributions on latent and visible variables are parametrised by sev-

eral different neural networks; this can make the models difficult to train. Other than

the SDGM, these models cannot be trained end-to-end using backpropagation. While

they achieve very good results, their instability and the difficulty of training with ap-

proximate inference currently limit their scalability and wider adoption within semi-

supervised learning.

Another category of generative models are Generative Adversarial Networks

(GANs) introduced by Goodfellow et al. in [10]. GANs simultaneously train a gen-

erator network G(z;θ(G)) and a discriminator network D(x). The generator is trained

to transform noise vectors z to samples from the data distribution Prdata(x). The dis-

criminator is trained to distinguish between samples from the true data distribution and

the distribution of the generator samples Prmodel(x). The training signal for the genera-

tor comes from the discriminator; the generator learns to try to ‘fool’ the discriminator

into classifying a generated sample as being drawn from Prdata(x). Training of an ad-

versarial net can be characterised as a two-player game in the game theoretic sense, and

there is a natural convergence point at the Nash equilibrium of the game. The entire sys-

tem can be trained by backpropagation without using approximate inference as in the

generative models previously discussed, but the optimisation problem is non-convex
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and high-dimensional.

The extension of GANs to semi-supervised learning by Salimans et al. in [35] is to

add to the supervised cross-entropy loss of a standard classifier an additional unsuper-

vised loss function for the discriminator to distinguish between ‘true’ unlabelled exam-

ples from Prdata(x) and samples generated according to Prmodel(x). [35] achieved

state-of-the-art results in SSL using adversarial nets trained with feature matching,

where the training target for the generator is not to maximise the discriminator output

(the probability that the input is real rather than generated), but to match the statistics

of an intermediate layer of the discriminator. This approach is similar to the layer-wise

denoising carried out by the aforementioned ladder network.

Another successful approach with GANs is the Categorical Generative Adversarial

Network (CatGAN) by Springenberg [39], which generalises the discriminator in the

GAN from the binary generated/real classification regime to an unsupervised clustering

into a predetermined number of classes. The CatGAN is applied to SSL by combining

this unsupervised cost with the standard cross-entropy loss on labelled examples.

A related technique that also generalises GANs to unsupervised learning is the

adversarial autoencoder (AAE), developed by Makhzani et al. in [21]. AAEs use the

machinery of the GAN to perform variational inference by matching the distribution

of the latent code of an autoencoder, which acts as the generator network, to a prior

distributional form. AAEs, though originally designed as an unsupervised method,

can be used for semi-supervised learning by passing a one-hot class vector into the

discriminator where the classes include the original label classes and an additional class

for unlabelled examples.

While adversarial nets can generate very high quality samples indistinguishable by

humans as generated examples [35] and have had excellent results on semi-supervised

learning, training of GANs is challenging as they often fail to converge [11].

A similar vein of work to adversarial nets that extends the idea of adversarial train-

ing from the two-player game context is that of adversarial training (AT), as briefly

mentioned in Section 2.3.5. Adversarial training as originally formulated requires the

ground truth labels of the examples to be perturbed. In [23], Miyato et al. introduced

virtual adversarial training (VAT), a technique based on similar principles but which

does not require true labels. In place of the adversarial direction which causes misclas-
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sification, the virtual adversarial direction gives the perturbation in input space which

most shifts the prediction probabilities of a model. VAT is the second of the two meth-

ods (following the ladder) on which this work is based, and both AT and VAT are

discussed in greater detail in Chapter 3.

VAT belongs to a class of semi-supervised learning methods which can also be

seen as a regularisation method, as mentioned in Section 2.3.5. Another such method

is randomised data augmentation [34]. The temporal ensembling method of Laine and

Aila in [17], which uses an ensemble of models from different points during training,

extends the regularising effect of ensembles that is also exploited by methods such as

dropout.

Many of the perturbation-based regularisation and semi-supervised learning meth-

ods such as VAT and data augmentation can be thought to exploit the smoothness and

manifold assumptions described in Section 2.1.1. In general and for these methods in

particular, we assume that inputs occur only along a collection of manifolds containing

a small subset of points, with variations of interest in the output only occurring along

directions that lie in the manifold, or when moving from one manifold to another [9,

page 156]. This is supported by the distribution of real-world data, which are highly

concentrated in salient feature spaces, e.g., images, text strings, sounds. If data lie on a

manifold, then there exists a set of transformation that allow traversal of the manifold

by moving from an example to a highly similar one. In images, these correspond to

the familiar transformations used in data augmentation such as rotation, lighting, and

scaling. A class of older methods including tangent propagation, double backpropa-

gation, contractive autoencoders [32], and the manifold tangent classifier [31], directly

aim to smooth this manifold either isotropically or in particular directions relative to

the manifold. We will see in Chapter 3 that virtual adversarial training has a similar

effect.
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Chapter 3

Comparative analysis of ladder

networks and virtual adversarial

training

In this chapter we discuss two state-of-the-art methods in deep semi-supervised learn-

ing: the ladder network and virtual adversarial training. The former represents the

approach common in deep learning in general, of designing architectures suited to the

problem, applied to semi-supervised learning. In its theoretical motivations the latter

resembles an adaptation to deep learning of the approaches taken historically in clas-

sical semi-supervised learning. We have chosen to study and build on these models in

particular as they both perform very well while still being relatively simple, fast, and

stable to train, especially compared to the generative models in the field.

We first describe each method in detail, then compare the two approaches on the

basis of their theoretical foundations and practical utility.

3.1 Ladder network

3.1.1 Autoencoders

The ladder network is modelled on the autoencoder (AE) architecture, which is con-

ceptually illustrated in Figure 3.1. An autoencoder is an architecture originating in un-

supervised learning which aims to generate a representation c(x) from which the input

x can be reconstructed [2]. The encoder takes as input x and generates the representa-

tion c(x) (also called the encoding), and the decoder takes as input the representation



Figure 3.1: Conceptual illustration of an autoencoder architecture.
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c(x) and outputs x̃, a reconstruction of x. The autoencoder is trained by minimising

the reconstruction costRC, which is most commonly the negative log-likelihood of the

input given the encoding:

RC ∝ − log Pr(x|c(x)).

For Gaussian x|c(x) the reconstruction cost becomes the squared error between input

x and reconstruction x̃:

RC ∝ (x− x̃)>(x− x̃)

.

As no label is required, the reconstruction cost can be used for purely unsuper-

vised learning. Although the autoencoder is trained to optimise the quality of the re-

construction, the learnt representations c(x) are usually of much greater interest than

the reconstructions.

The standard AE architecture as illustrated in Figure 3.1 has an informational bot-

tleneck at the latent code, which constrains c(x) to have lower dimensionality than the

input space. This case, where the code dimension is lower than the input dimension, is

called undercomplete. The motivation for an undercomplete AE is to force the network

to learn only the most salient features in the inputs [9]. Where the code dimension is

higher than the input dimension, the autoencoder is overcomplete. An overcomplete
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encoder has high model capacity, and this can yield highly expressive representations

useful for tasks other than the pure reconstruction such as classification.

With non-linear undercomplete and all overcomplete autoencoders, the network

can potentially learn a trivial mapping from inputs to latent code to outputs, e.g., map

each training example to a number i for a one-dimensional latent code, which the de-

coder can equivalently map back to the training example. Though this does not usually

happen in practice, due to minibatch gradient descent acting as a regulariser [2, 45], a

variety of regularisation techniques exist for AE’s.

These adaptations can also induce latent codes with particular useful properties.

Examples include the sparse autoencoder, which induces sparse codes by adding a

sparsity penalty to the code layer; the denoising autoencoder (DAE), which aims to re-

construct x given a corrupted, noisy version x̃ as input; and the contractive autoencoder

(CAE), which regularises the code with a norm of the Jacobian of the code with respect

to the inputs, inducing invariance of the code to small changes in the inputs [9, 32, 31].

3.1.2 Ladder network architecture

The ladder network, first introduced by Valpola in [42] and extended to semi-supervised

learning by Rasmus et al. in [30], builds on the autoencoder to create a powerful archi-

tecture for both supervised and semi-supervised learning. The ladder network is trained

using a sum of supervised and unsupervised terms in the loss to be minimised.

The ladder network has at its core the standard encoder-decoder structure. Like

the denoising autoencoder, noise is applied to the inputs, but unlike in the DAE, noise

is also applied to every layer in the encoder before each non-linear activation. In ad-

dition to this corrupted encoder, there is also a clean encoder, which is a copy of the

corrupted encoder but without the added noise of the corrupted path. The decoder has

a symmetrical structure to the encoder path, and not only has to reconstruct the input

image, but the activations in each layer of the encoder. Each layer of the decoder has an

input from the corrupted encoder path, giving the corrupted version of the activations

at that layer, and an input from the previous layer in the decoder. The reconstruction

target for each layer is provided by the corresponding layer in the clean encoder.

This structure is illustrated in Figure 3.2 for a ladder network with L = 2 layers.

The encoder layers are numbered l = 0, 1, ..., L with l = 0 corresponding to the inputs,
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Figure 3.2: Illustration of a ladder network architecture.
Left: Corrupted encoder with activations z̃(l), Gaussian noise N (0, σ2) injected at each layer, and out-

puts ỹ, on which the cross-entropy loss is computed. Centre: Decoder path, where input from the layer

above and from the corresponding layer in the corrupted encoder are combined with a denoising (also

combinator) function g(l)(·, ·) to form the reconstruction of that layer ẑ(l). Right: Clean encoder path,

the weights of which are shared with the corrupted encoder; the activations z(l) are the targets against

which the reconstruction cost at each layer is computed, and the output probabilities y are used for

predictions.
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and the decoder layers are numbered l = L,L − 1, ..., 0 starting with l = L the final

output layer of the encoder. Activations at layer l in the clean encoder are denoted

z(l). The corresponding noisy activations in the corrupted encoder are denoted z̃(l).

The corresponding reconstructions, which are the activations of the decoder at l, are

denoted ẑ(l).

A weighted sum of the reconstruction costs at each layer comprises the unsuper-

vised term of the training loss. The supervised loss term is computed as the cross-

entropy loss between the output probabilities of the corrupted path and the true labels.

The cross-entropy loss, Equation 3.2, is computed only on the labelled examples in

each batch, and the reconstruction loss is computed only on the unlabelled examples.

The labelled dataset is usually included without labels in the larger unlabelled pool.

The total loss L which is minimised during training is thus given by:

L = Cc + Cd (3.1)

Cc =
−1

N

N∑
n=1

log Pr(ỹ = t(n)|x(n)) (3.2)

Cd =
L∑
l=0

λ(l)

Nml

N∑
n=1

∥∥∥z(l)(n)− ẑ
(l)
BN(n)

∥∥∥2 , (3.3)

where the sum over n is over unlabelled training examples, N is the total number of

unlabelled examples, ml is the number of units in layer l, and λ(l) is a hyperparameter

for the weighting given to each layer’s reconstruction cost.

The algorithmic procedure for computing the outputs and cost function of the lad-

der network, which further elucidates the architecture, is given in Algorithm 3.1, using

the same notation as in Figure 3.2. Additionally examples and activations correspond-

ing to labelled examples are subscripted with S and unlabelled examples with U .

When computing the cross-entropy loss, corrupted encoder probabilities are used

to take advantage of the regularisation properties of additive Gaussian noise Section

2.3.5. Another source of stochasticity which regularises the autoencoder structure from

learning a trivial code is batch normalisation. In the ladder network, batch normalisa-

tion is applied at each layer of the encoder and decoder. Batch statistics are computed

on the clean encoder path and applied to corrupted encoder path. Statistics are com-

puted separately for labelled and unlabelled data at training time on the clean encoder
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Algorithm 3.1 Calculation of the output y and cost function C of the Ladder network

Require: x(n)

# Clean encoder (for denoising targets)

h(0) ← z(0) ← x(n)

for l = 1 to L do

z
(l)
pre ←W(l)h(l−1)

# BN labelled examples, save stats

µ
(l)
S ← batchmean(z

(l)
pre,S)

σ
(l)
S ← batchstd(z

(l)
pre,S)

z
(l)
pre,S ← (z

(l)
pre,S − µ

(l)
S )/σ

(l)
S

# BN unlabelled examples

µ
(l)
U ← batchmean(z

(l)
pre,U )

σ
(l)
U ← batchstd(z

(l)
pre,U )

z
(l)
pre,U ← (z

(l)
pre,U − µ

(l)
U )/σ

(l)
U

# Concatenate and activate together

z(l) = concat(z
(l)
S , z

(l)
U )

h(l) ← φ(γ(l) � (z(l) + β(l)))

end for

# Corrupted encoder and classifier

h̃
(0) ← z̃(0) ← x(n) + noise

for l = 1 to L do

z̃
(l)
pre ←W(l)h̃

(l−1)

# BN labelled with clean stats

z̃
(l)
pre,S ← (z

(l)
pre,S − µ

(l)
S )/σ

(l)
S

# BN unlabelled with batch stats

µ← batchmean(z̃
(l)
pre,U )

σ ← batchstd(z̃
(l)
pre,U )

z̃
(l)
pre,U ← (z

(l)
pre,U − µ)/σ

# Concatenate and activate together

z̃(l) ← concat(z̃
(l)
pre,S , z̃

(l)
pre,U ) + noise

h̃
(l) ← φ(γ(l) � (z̃(l) + β(l)))

end for

# Outputs of corrupted/clean encoders

P (ỹ | x)← h̃
(L)

P (y | x)← h(L)

# Decoder and denoising

for l = L to 0 do

if l = L then

u
(L)
pre ← h̃

(L)

else

u
(l)
pre ← V(l+1)ẑ(l+1)

end if

µ← batchmean(u
(l)
pre)

σ ← batchstd(u
(l)
pre)

u(l) ← (u
(l)
pre − µ)/σ

# Apply combinator element-wise

∀i : ẑ(l)i ← g(z̃
(l)
i , u

(l)
i )

# BN element-wise with clean batch stats

∀i : ẑ(l)i,BN ← (ẑ
(l)
i − µ

(l)
U,i)/σ

(l)
U,i

end for

# Cost function C for training:

C← 0

if t(n) then

C← − logP (ỹ = t(n) | x(n))

end if

C← C+
∑L

l=0 λl

∥∥∥z(l) − ẑ
(l)
BN

∥∥∥2
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path and saved for each layer. The batch statistics from the clean encoder for unlabelled

data is used to normalise the reconstructions in the decoder to give the ẑ
(l)
BN terms in

the denoising cost of Equation 3.3.

An important architectural choice in the ladder network is the denoising function

g(l)(·, ·) which for layer l takes as inputs the activations of the previous layer in the

decoder, ẑ(l+1), and the noisy version of the activations, z̃(l). This is then passed through

an activation function φ(·) to give ẑ(l) = φ(γ(l)). The denoising function originally

proposed in [30] is an approximation to the optimal denoising function for a Gaussian

distribution of activations in the encoder given the activations in the layer above, i.e.,

z(l)|z(l+1) is Gaussian-distributed. It is formulated as

ẑ
(l)
i = gi(z̃

(l)
i , u

(l)
i ) =

(
z̃
(l)
i − µi(u

(l)
i )
)
υi(u

(l)
i ) + µi(u

(l)
i ) (3.4)

where u(l)i is the appropriate element from the batch-normalised projection from the

previous layer

u(l) = NB(V(l+1)ẑ(l+1))

and the functions µi(u
(l)
i ) and υi(u

(l)
i ) are defined as

µi(u
(l)
i ) = a

(l)
1,isigmoid(a

(l)
2,iu

(l)
i + a

(l)
3,i) + a

(l)
4,iu

(l)
i + a

(l)
5,i

υi(u
(l)
i ) = a

(l)
6,isigmoid(a

(l)
7,iu

(l)
i + a

(l)
8,i) + a

(l)
9,iu

(l)
i + a

(l)
10,i,

with a(l)1,i, ..., a
(l)
10,i are trainable parameters initialised to zero except for a2 and a7, which

are initialised to unity.

3.1.3 Extensions of the ladder architecture

The general principle of the ladder network is to augment a supervised neural network

classifier with an auxiliary decoder to allow it to take advantage of unlabelled data

[30]. The classifier, which becomes the encoder of the ladder network, is not limited

to fully-connected feed-forward architectures; it has also been implemented on convo-

lutional feed-forward classifiers [30] and is theoretically possible with recurrent neural

networks.

In the classic ladder architecture, the decoder is symmetric to the encoder. For

a fully-connected feed-forward encoder, the decoder has fully-connected layers with

weights that are the transpose shape of the encoder weights. For a convolutional or re-

current neural network encoder, the decoder may have a more complicated architecture
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to implement and train. A possible solution to this is the Γ architecture[30], which uses

a reconstructive cost only at the top layer (l = L) of the encoder.

The choice of denoising function g(l)(z̃(l),u(l)) need not be the rule given in Equa-

tion 3.4, which might in fact seem arbitrary though theoretically motivated (details in

[30, 42]). In a deconstructive analysis of the ladder network architecture, [29] tested

the effect of replacing the denoising function (which they call a combinator function)

and found that replacing the original denoising function (the ‘vanilla’ combinator) with

a multi-layer perceptron (MLP), i.e., feed-forward network, with one or two small hid-

den layers (such that the total number of trainable parameters remained similar to the

original combinator) outperformed the original. Their best performance was reported

on the ‘augmented MLP’ with three inputs, z̃(l),u(l), and their element-wise product

z̃(l) � u(l), mapped to a single output for every pixel.

3.2 Virtual adversarial training

3.2.1 Adversarial perturbations

As described in Section 2.3.5, the smoothness assumption introduced in Section 2.1

and utilised by some of the methods described in Section 2.2 has been observed to

be advantageous in deep supervised and semi-supervised learning: training models to

be robust to random, local perturbations can improve classifier generalisation. How-

ever, a recent vein of research has revealed that models trained to be robust to random

perturbations are highly vulnerable to even very small perturbations in the so-called

adversarial direction, i.e., the direction in input space to which the classifier’s output

probabilities are most sensitive [12].

These adversarial perturbations on inputs x with labels y are mathematically de-

fined as follows [12]:

radv := arg max
r;‖r‖≤ε

D [h(y),Pr(y|x + r,θ)] , (3.5)

where ε is a parameter dictating the size of the perturbation; h(y) is the target distribu-

tion, i.e., a one-hot vector of the true labels; Pr(y|x+r,θ) is the output probabilities of

the model with parameters θ; and D[p, q] is some non-negative function that measures

the ‘distance’ between two distributions P and Q, such as the Kullback–Leibler (KL)

divergence [20]
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DKL[P,Q] :=
∑
x

P (x) log
P (x)

Q(x)
. (3.6)

Adversarial perturbations for the Lq norm can be approximated as

radv ≈ ε
g

‖g‖q
where g = ∇xD [h(y),Pr(y|x,θ)] . (3.7)

For L∞ norm, the approximation further simplifies to the fast gradient sign method

[12],

radv ≈ εsign(g). (3.8)

In classification problems the supervised loss is typically the cross entropy of the

predictions with respect to true labels, which is related to KL–divergence by a constant

additive term. In this case, by choosing D[p, q] to be the cross entropy, the gradient

used to compute the adversarial example g can be efficiently computed using back-

propagation on the compute graph of the model.

Adversarial training refers to training a model using the adversarial loss

Ladv(x, y,θ) := D [h(y),Pr(y|x + radv,θ)] .

[12] found that adversarial training not only increased the robustness to adversarial

perturbations but also increased generalisation performance.

3.2.2 Virtual adversarial perturbations

Virtual adversarial perturbations were first presented by Miyato et al. in [23] and extend

adversarial perturbations to the case where there are no labels by approximating h(y)

with the current estimate Pr(y|x, θ̂). The perturbation is defined as

rvadv := arg max
r;‖r‖2≤ε

D
[
Pr(y|x, θ̂),Pr(y|x + r.θ)

]
, (3.9)

The virtual adversarial training loss is then defined as the average over all input

data points of

Lvadv(x,θ) := D
[
Pr(y|x, θ̂),Pr(y|x + radv,θ)

]
.

3.2.3 Approximating virtual adversarial perturbations

The computational difficulties of VAT arise not from the computation of D[p, q], which

is straightforward for p, q that can be approximated with exponential family distribu-

tions, but from the efficient computation of rvadv. [22] proceed as follows.
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For simplicity, denote D
[
Pr(y|x, θ̂),Pr(y|x + r,θ)

]
as D(r,x,θ) and assume

Pr(y|x,θ) is twice differentiable with respect to θ and x almost everywhere. Since D

is a metric between x and x + r, it is minimised for r = 0, i.e., has zero first derivative

∇rD(r,x,θ)|r=0. Hence by second-order Taylor expansion:

D(r,x, θ̂) ≈ 1

2
r>H(x, θ̂)r, where H(x, θ̂) := ∇∇rD(r,x, θ̂)|r=0 (3.10)

H is the Hessian matrix. Under this approximation

rvadv ≈ arg max
r

{
r>Hr; ‖r‖2 ≤ ε

}
, (3.11)

r>Hr is maximised for r ‖ (Hr), which requires r to be an eigenvector of H. Thus

rvadv lies in the direction of an eigenvector of H, which implies r>Hr = λr>r = λ‖r‖22
where λ is the eigenvalue of H corresponding to the eigenvector r. Hence the approx-

imate rvadv is chosen to be the eigenvector with largest eigenvalue, i.e., the dominant

eigenvector, of H, with magnitude ε.

Algorithm 3.2 Power method for approximating dominant eigenvector of a matrix A.

Generate random vector q(0) ∈ Rn.

for k=1 to K do

z(k) ← Aq(k−1)

q(k) ← z(k)/‖z(k)‖

end for

return q(K)

Eigenvector computation is O(n3) in the dimension of the matrix, thus in VAT

the dominant eigenvector is approximated using the power iteration method given in

Algorithm 3.2 [8], which relies on iterative computations of

q← Hq

‖Hq‖2
.

A further finite difference approximation is applied for efficient computation of

the Hessian-vector product as:

Hq ≈ ∇rD(r,x, θ̂)|r=ξq −∇rD(r,x, θ̂)|r=0

ξ
(3.12)

=
∇rD(r,x, θ̂)|r=ξq

ξ
(3.13)
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[23] and [22] found by cross-validation that performance of VAT did not substan-

tially increase when the number of iterations was increased above K = 1, which we

also confirmed in our experiments (see Section 6.3). When the number of power itera-

tions is K = 1, this gives an expression for VAT similar to Equation 3.7 for AT:

rvadv = ε
g

‖g‖2
whereg = ∇r D

[
Pr(y|x, θ̂),Pr(y|x + r,θ)

]∣∣∣
r=ξq

(3.14)

3.3 Ladder, VAT, and the manifold hypothesis
Both the ladder network and virtual adversarial training tackle semi-supervised learn-

ing by minimising a penalty term computed on unsupervised examples which induces

robustness to small perturbations. In the ladder, these perturbations are Gaussian and

applied at every layer of the encoder, increasing its performance above the denoising

autoencoder, and the penalty is a squared loss term. In VAT, the perturbations are virtual

adversarial (and therefore anisotropic) and applied only at the input level.

The derivation in Section 3.2 for the approximation to rvadv illustrates that finding

the direction q to move from the current data point to maximise the KL-divergence of

the distributions Pr(y|x + q) and Pr(y|x) is equivalent to finding the principal eigen-

vector of the Hessian of the network outputs (predictive probabilities for each of the

classes) with respect to the input images. This suggests possible extensions of VAT

that smooth the curvature of latent space in other ways, e.g., by regularisation more

than just the dominant eigenvector of the Hessian. Such approaches would however be

limited by the computational cost of calculating the Hessian, which has been avoided

here by use of the finite difference method for the Hessian-vector product. However,

the anisotropic, directed smoothing carried out by VAT could be considered a strength

which can be applied in conjunction with more isotropic smoothing methods.

Autoencoders rely on the manifold assumption and aim to learn the structure of

the manifold on which the data lie. A regularised AE, in learning the salient features

for the reconstruction task, learns the directions of variation necessary to reconstruct

examples drawn from the inputs’ distribution [9].

The encoder in the ladder network combines learning a latent code with outputting

a probability distribution over labels. Its weights must be trained in such a way as to

learn features relevant to both the classification and the reconstruction task. We hypoth-

esise that the ladder network must firstly learn the directions necessary for reconstruc-
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tion, i.e., directions of variation in natural images, essentially finding a manifold repre-

senting the subspace of natural images within the higher dimensional latent spaces of

its layers; and secondly, it must learn within that subspace the manifolds in which vari-

ations do not affect the classification outcome. The strength of the ladder network may

come from the end-to-end learning of both of these tasks at once. Where embedding-

based methods in deep SSL and change of representation methods in classical SSL

use a two step process of first projecting to a feature space and then classifying in that

space, the ladder network optimises for both objectives with every parameter update.

In addition to this, the training signal for the ladder network includes the denoising cost

at every intermediate activation, which pushes the two requirements stated above onto

every layer.

The reconstructive architecture of the ladder network maps out a manifold for nat-

ural images in the space of each of its layers. Adversarial perturbations, by identifying

directions to which class probabilities are most sensitive, can effectively push or pull

apart classes in latent space; virtual adversarial perturbations can approximate this be-

haviour and make use of unlabelled data. This leads us to believe that applying virtual

adversarial training to ladder networks could improve performance on supervised tasks

after training in a semi-supervised manner, and motivates the models we propose in the

next chapter.

3.4 Practical considerations
The ladder network and virtual adversarial training are appealing as relatively straight-

forward but powerful methods of applying semi-supervised learning to pre-existing

classifier neural networks.

In [30], Rasmus et al. used a decoder for the full ladder network that mirrors the

encoder structure while noting that there is no explicit need for the decoder to match the

encoder in structure or for every activation layer to be reconstructed. However, it was

observed that reconstruction only at the top level (Γ model) or at the bottom and top

layers only did not perform as well as the full ladder where the decoder mirrors every

layer in the encoder. Thus to implement the full ladder on a new encoder, one must

implement a corresponding decoder. This can be quite complicated for models such

as convolutional neural networks, which have layers like max- or average-pooling, the
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‘reverse’ of which can be hard to choose unambiguously.

Implementing a symmetric decoder structure also involves doubling the number

of trainable weights in the network. While a pre-trained classifier can be used as an

encoder, the decoder weights must be fully trained from initialisation. Using the re-

construction cost also requires hyperparameter optimisation over the weights applied

to each layer’s denoising cost, as well as a number of other hyperparameters associ-

ated with the ladder such as the width of the additive Gaussian noise in the corrupted

encoder.

By contrast virtual adversarial training does not increase the number of trainable

parameters. It further only has two hyperparameters α and ε, and [22] showed that for

small ε, α has very little effect, recommending that only ε be tuned. VAT thus is very

straightforward to implement on new models.
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Chapter 4

Virtual Adversarial Ladder Networks

4.1 Motivation
We believe that virtual adversarial training can improve the semi-supervised classifica-

tion performance of the ladder network by enhancing the semi-supervised separation

of classes in the ladder network’s learned latent spaces. Thus we propose four models

that test the effect of adding either a virtual adversarial cost or a virtual adversarial per-

turbation, either with respect to the input layer or with respect to every activation layer

in the encoder.

The four models we propose in this section have ladder network architectures with

virtual adversarial training (VAT) incorporated into the corrupted encoder path. Two

models, ladder with virtual adversarial cost (LVAC) and ladder with layer-wise virtual

adversarial cost (LVAC-LW), apply VAT as originally proposed in [23] and described

in Section 3.2. The other two models, ladder with virtual adversarial noise (LVAN)

and ladder with layer-wise virtual adversarial noise (LVAN-LW), attempt to boost the

performance of the ladder by making the denoising task more informative through the

incorporation of virtual adversarial perturbations (VAP). Using virtual adversarial noise

instead of virtual adversarial cost reduces the number of pairs of forward and backward

passes required at training time from three to two as the explicit VAT cost does not have

to be computed.

Other than the additions to corrupted encoder to incorporate VAT, we have used

the original configurations of the ladder network in [30]. However, the combinator

used (Equation 3.4) assumes Gaussianity of noise and of activations in the encoder path

conditioned on the layer above. Ideally we would have used a more generic combinator



function such as the AMLP tested by [29], but tests of this on our implementation of

the ladder found it to be less stable than the original combinator function.

All models retain the same decoder and clean encoder structure as the ladder net-

work (Figure 3.2), so only the corrupted encoder path are shown in the conceptual

illustrations of the models in Figures 4.1a–4.1d. Incorporating virtual adversarial train-

ing into the ladder does not increase the number of parameters, so all of our models

have the same memory footprint as the base ladder network.

All models were trained with losses including the supervised term Cc and the re-

construction/denoising term Cd previously stated in Equations 3.2 and 3.3 and repeated

below:

Cc =
−1

N

N∑
n=1

log Pr(ỹ = t(n)|x(n))

Cd =
L∑
l=0

λl
Nml

N∑
n=1

∥∥∥z(l)(n)− ẑ
(l)
BN(n)

∥∥∥2 .
All virtual adversarial perturbations are computed with L2 norm and KL–

divergence DKL[P,Q] :=
∑

x P (x) logP (x)−
∑

x P (x) logQ(x) as the distance met-

ric D[P,Q].

4.2 Ladder with virtual adversarial cost (LVAC)
In addition to the supervised cross-entropy cost and unsupervised activation reconstruc-

tion cost, a virtual adversarial cost of the predictions with respect to the input images is

added to the training loss of a ladder network. The model is conceptually illustrated in

Figure 4.1a.

Using the notation of Section 3.2 and x̃, ỹ,θ to denote the input, output, and pa-

rameters of the corrupted encoder of the ladder, the virtual adversarial cost for LVAC

can be expressed as

Cvadv = αDKL [Pr(ỹ|x̃,θ),Pr(ỹ|x̃ + rvadv,θ)] (4.1)

rvadv = arg max
r

{DKL [Pr(ỹ|x̃,θ),Pr(ỹ|x̃ + r,θ)] ; ‖r‖2 ≤ ε} . (4.2)

This most closely resembles vanilla virtual adversarial training applied to the lad-

der network. In addition to the reconstruction cost weight hyperparameters of the lad-

der network, LVAC has the α and ε parameters of VAT, where α is the weighting of the
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Figure 4.1: Conceptual illustrations of our proposed models. All show the corrupted

encoder path only; the decoder and clean encoder, which are not shown, are identical

to that of the standard ladder shown in Figure 3.2.
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VAT cost relative to the supervised cost and ε is the maximal magnitude of the virtual

adversarial perturbation.

4.3 Ladder with virtual adversarial cost, layer-wise

(LVAC-LW)
As with LVAC, a virtual adversarial cost is included in the training loss, but this is

computed for the predictions with respect to each layer of activations in the encoder of

the ladder network. The structure is illustrated in Figure 4.1b. The VAT loss can be

written

Cvadv =
∑
l

α(l)DKL

[
Pr(ỹ|z̃(l),θ),Pr(ỹ|z̃(l) + r

(l)
vadv,θ)

]
, (4.3)

r
(l)
vadv = arg max

r

{
DKL

[
Pr(ỹ|z̃(l),θ),Pr(ỹ|z̃(l) + r,θ)

]
; ‖r‖2 ≤ ε(l)

}
(4.4)

where z̃(l) is the activation in layer l of the corrupted encoder path, with z̃(0) = x̃.

In LVAC-LW we compute a virtual adversarial perturbation for each layer, thus

there is a tunable magnitude ε(l) and weighting α(l) at each layer l.

4.4 Ladder with virtual adversarial noise (LVAN)
In addition to the Gaussian noise added to the activations of the corrupted encoder

at each layer, a virtual adversarial perturbation of the same form as used in LVAC

(Equation 4.2) is computed for and added to each input image. The structure is shown

in Figure 4.1c.

The reconstruction cost for the lowest level of the network is a squared loss corre-

sponding to denoising an image perturbed with both isotropic Gaussian noiseN (0, σ2)

and a virtual adversarial perturbation (VAP). There is no explicit VAT cost term in

the optimisation objective. LVAN adds one additional hyperparameter to the ladder, ε

determining the magnitude of the VAP.

4.5 Ladder with virtual adversarial noise, layer-wise

(LVAN-LW)
As with LVAN, there is no explicit VAT cost term. The noise added on the corrupted

encoder path at each layer is an addition of a Gaussian and a VAP of the predictions
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with respect to the activations at that layer. This structure is illustrated in Figure 4.1d.

The VAP added at each layer l is of the same form as the perturbations for LVAC-LW,

given in Equation 4.4.

As with LVAC-LW, there is a magnitude parameter ε(l) for the virtual adversarial

perturbations generated at each layer l, but as it has no explicit VAT cost term, like

LVAN it has no associated α parameters.
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Chapter 5

Methodology

5.1 Data
We carried out our experiments on the MNIST dataset of handwritten digits [18]. There

are 60,000 examples in the training set and a test set of 10,000 examples. The digits are

size-normalised and centred in the fixed-size image of 28×28 pixels with one greyscale

channel. The MNIST dataset was used as almost all recent semi-supervised learning

methods have been benchmarked on the dataset using 100 and 1000 labels. It is also

lightweight and relatively quick to train on compared to larger datasets such as SVHN

or CIFAR-10, thus it made sense to use this for the scope of this time- and resource-

limited project. The images are passed to models as 784–dimensional vectors. Labels

are one-hot encoded vectors with dimensionality equal to the number of classes (10).

As is standard for semi-supervised learning, our experiments are averaged over

different selections of labelled examples. The labelled dataset in all investigations is

class–balanced. The random seeds generating the partitionings are fixed across experi-

ments to ensure that comparisons are fair.

5.2 Model implementation
Our models were constructed using the Tensorflow library and its Python API [1].

5.2.1 Ladder network implementation

We have made some small changes to the architecture in [30]: we have used leaky

rectified linear units (LReLU) instead of rectified linear units (ReLU) and a slightly

modififed averaging scheme for batch normalisation statistics. The combinator function

used was the original denoising function used in [30]. We also implemented the MLP



combinator introduced in [29], but the models using this combinator failed to converge.

Our TensorFlow implementation is modelled on the Theano source code1 accom-

panying [30].

5.2.2 VAT implementation

Our implementation is modelled on that of [22], using as reference the accompanying

Theano code2 and reusing much of the publicly available TensorFlow code3.

The underlying model which was trained using VAT in [22] was a fully-connected

feedforward network with hidden layers of size 1200, 600, 300 and 150. The baseline

model which we trained and for which we have reported results used the same encoder

structure as was used for the ladder and all of our proposed models (see next).

5.2.3 Our models

The base architecture used for the encoders in our models consisted of five hidden lay-

ers with 1000, 500, 250, 250, 250 units respectively. The same code is used for these

models as for our ladder network and VAT implementations, allowing direct compari-

son between the results obtained with our models and with these baseline models. Any

discrepancy between the results seen in replicating benchmarks with our implementa-

tions of the VAT and ladder will also be reflected in our proposed models.

5.3 Model training
As time and resources for hyperparameter optimisation were limited, we chose a train-

ing schedule for all our models by compromising between the settings used in [30]

for the ladder and [22] for VAT. Both papers used initial learning rates 0.002 with the

Adam optimiser, but [22] used lower β1, β2 values than the defaults used by [30]. In

[22], models were trained for 400 epochs with linear decay from 200 epochs; whereas

[30] trained models for 150 epochs with linear decay after 100.

We thus used the Adam optimiser with 0.002 learning rate for 200 epochs, fol-

lowed by 50 epochs with linearly decaying learning rate. β1 = 0.9, β2 = 0.999, the

values used in [30], were used. All models were trained for 200 epochs with 0.002

1http://github.com/CuriousAI/ladder/
2http://github.com/takerum/vat
3http://github.com/takerum/vat_tf

41

http://github.com/CuriousAI/ladder/
http://github.com/takerum/vat
http://github.com/takerum/vat_tf


learning rate, followed by 50 epochs where the learning rate was linearly decayed. All

weights were initialised randomly using the Glorot initialisation scheme [7].

5.4 Hyperparameter optimisation
Given limited time and resources, the possible hyperparameter space had to be sparsely

explored.

As detailed in Section 5.3, hyperparameters relating to the learning schedule, such

as initial learning rate, learning rate decay schedule, and Adam β1, β2 coefficients, were

fixed.

The hyperparameters which were optimised over for the ladder network in [30] and

[29] were the standard deviation σ of the noise in the encoder, and the reconstruction

weights λ(l) for each layer. Both papers used the same network structure as we did with

seven total layers (one input, five hidden, one output) and hence seven reconstruction

weights, but only tuned three values: λ(0), λ(1) and λ(l≥2).

For VAT, [22] showed that since ε gives the size of the perturbation, it was often

sufficient to fix α = 1 and tune only ε.

For our models, we carried out very approximate hyperparameter optimisation.

We fixed σ = 0.3 and α = 1 for all models. For LVAC and LVAN, we optimised

λ(0), λ(1), λ(≥2), and ε. For the layer-wise models LVAC-LW and LVAN-LW, we opti-

mised λ(0), λ(1), λ(≥2), ε(0), ε(1), and ε(≥2).

As a grid search would have been prohibitively expensive time-wise, we used

Bayesian optimisation as implemented in the scikit-optimize library [37]. This method

uses Gaussian process regression of values of the objective function to estimate the next

best point to evaluate the objective function, taking into account user–specified priors

on the tunable parameters.

The objective function for our optimisation was the validation error on a fixed val-

idation set of 1000 examples sampled from the training set, after 25 epochs of training

(10% of the total training time used for the full models). We used only two iterations

of the Gaussian process optimisation routine, which leaves significant capacity for im-

provement of the hyperparameter optimisation of our models.

The results of the optimisations which we used when training our full models for

the experiments in Chapter 6 are given in Appendix A.
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Chapter 6

Experimental results and discussion

6.1 Performance on MNIST

6.1.1 Benchmarks

Table 6.1 compares average error rate achieved on MNIST using 100, 1000 and all

60,000 labels for the most notable models mentioned above. We also include baseline

results obtained by [30] using a feedforward neural network with batch normalisation

and Gaussian noise regularisation, trained using supervised cost only. This baseline

error rate for 100 labels is 21.74% ± 1.77, an order of magnitude larger than the error

rates achieved by the methods that use unlabelled data. By comparison, the best per-

formance in the fully supervised setting using all 60,000 labels is currently 0.21%, as

achieved by Li et al. with DropConnect networks [43].

In this work we have applied our methods to the MNIST dataset only, but a num-

ber of recent papers, including [17] and [34], have not benchmarked performance

on MNIST, instead reporting performance on the SVHN [25] and/or CIFAR-10 [16]

datasets.

6.1.2 Our models

The results discussed in this section are summarised in Table 6.2.

We first investigated the performance of our proposed models on the standard

MNIST benchmarks for semi-supervised learning. 100 and 1000 labels on MNIST are

the standard benchmarks for semi-supervised learning methods.

For all experiments the unlabelled dataset was the entire training set of 60,000 ex-

amples. For each experiment we tested our proposed models on, we also benchmarked



Table 6.1: Benchmark average error rate (AER) on permutation-invariant MNIST.

100 labels 1000 labels All labels

Model %AER SE %AER SE %AER SE

Feat match GAN [35] 0.93 ± 0.065 – – – –

ADGM [19] 0.96 ± 0.02 – – – –

Ladder∗ [29] 1.002 ± 0.038 0.979 ± 0.025 0.578 ± 0.013

Ladder [30] 1.06 ± 0.37 0.84 ± 0.08 0.57 ± 0.02

SDGM [19] 1.32 ± 0.07 – – – –

VAT∗∗ [22] 1.36 – 1.27 – 0.64 –

Adversarial AE [?] 1.90 ± 0.10 1.60 ± 0.08 0.85 ± 0.02

CatGAN [39] 1.91 ± 0.1 1.73 ± 0.08 0.91 –

VAT [23] 2.33 – 1.36 – 0.637 ± 0.046

DGM M1+M2 [15] 3.33 ± 0.14 2.40 ± 0.02 – –

MLP baseline [30] 21.74 ± 1.77 5.70 ± 0.20 0.80 ± 0.03

∗ The deconstructive analysis of [29] replaced the combinator function in the original ladder net-

work with an ‘augmented multilayer perceptron’ (MLP) and achieved slightly better performance.

∗∗ VAT was introduced in [23] and extended by the same authors in [22], where better performance

was achieved with stabilising additive Gaussian noise and a deeper network architecture.

our implementations of the ladder and VAT which our proposed models were built on.

Our implementations of the ladder and VAT performed slightly worse than the pub-

lished results, and we believe these are due to the differences in our implementation

detailed in Section 5.2.

The performance metric used on MNIST is % average error rate (AER). We com-

puted standard errors on each AER as the sample standard deviation over 5 training

runs with different but fixed random seeds for the partitioning of the data and the ini-

tialisation of model weights.

For 1000 labelled examples, our implementation of the ladder model and VAT

performed better than our proposed models, with 1.10 ± 0.05 AER for the ladder and

1.11 ± 0.05 for VAT. The best of our proposed models was LVAC-LW with 1.48 ±
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Table 6.2: % Average Error Rate (AER) of our proposed models on MNIST with

50, 100 and 1000 labelled examples. Mean and standard deviation for 50 labels is

computed across ten training runs with different seeds fixed between models; mean

and standard deviations on 100 and 1000 labels are computed over five training runs.

50 labels 100 labels 1000 labels

Model AER (%) SE AER (%) SE AER (%) SE

VAT (ours) 5.38 ± 2.92 2.14 ± 0.64 1.11 ± 0.05

Ladder (ours) 1.86 ± 0.43 1.45 ± 0.36 1.10 ± 0.05

LVAC 2.42 ± 1.05 1.65 ± 0.12 1.28 ± 0.07

LVAC-LW 4.08 ± 3.55 1.39 ± 0.06 1.11 ± 0.12

LVAN 1.52 ± 0.20 1.30 ± 0.09 1.48 ± 0.03

LVAN-LW 1.42 ± 0.12 1.25 ± 0.06 1.51 ± 0.06

0.12. Lower variance was found for LVAN, which had AER 1.51 ± 0.06.

For 100 labelled examples, the best-performing model was LVAN-LW with 1.25

± 0.06. All of our models and our implementation of the ladder network outperformed

VAT both in AER and in variance. LVAN-LW, LVAN, and LVAC-LW all outperformed

our implementation of the ladder network (1.45 ± 0.36), though the magnitude of the

variance on the ladder network means that we cannot claim with certainty that our

models performed better. Remarkably, while the variance on the ladder AER increases

significantly as number of labels is decreased from 1000 to 100, the variance on our

models changes very little by comparison. This effect is particularly notable for LVAN-

LW.

To investigate if stability with fewer labels was a systematic property of our pro-

posed models, we decided to test performance after training on 50 labels only, i.e., five

examples for each class. In our review of the literature, we only found testing with 50

labelled examples in [30] on the ladder network, which achieved 1.62 ± 0.65 AER.

Our implementation of the ladder achieved 1.86 ± 0.43, which was outperformed by

both LVAN (1.52± 0.20) and LVAN-LW (1.42± 0.12). The variance on these models,

while larger than for the 100 label case, are still very small compared to the ladder net-

work or VAT, which is extremely unstable (5.38± 2.92) in the 50 label case. The LVAC
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Table 6.3: Training time per epoch in seconds, ranked by median time taken.

Time per Epoch (s)

Model Median Mean SE

VAT 10.25 28.81 ± 23.00

Ladder 16.00 16.01 ± 0.35

LVAN 36.75 38.66 ± 8.00

LVAN-LW 42.50 46.36 ± 8.80

LVAC 52.00 45.25 ± 9.00

LVAC-LW 65.25 65.80 ± 22.00

and LVAC-LW models also have large standard errors and high mean AER for these

models. This suggests that the VAT cost term is very unstable for very few labelled

examples, but the addition of VA perturbations still assists with training in these cases.

6.1.2.1 Comparisons of training time

We also compared the time taken per epoch for our models to train. Results are shown

in Table 6.3. The ladder network is slightly slower than VAT despite VAT requiring

three pairs of forward- and backpropagation whereas the ladder only requires one; we

believe this is due to the ladder encoder-decoder structure having effectively double the

depth of the network used for VAT, which corresponds just to the encoder. The ladder

network also needs to make a second forward pass through the clean encoder to gen-

erate the reconstruction targets, though as these weights are shared with the corrupted

encoder, backpropagation does not have to be carried out separately. We thus expect

the ladder to take between two and three times longer than VAT at least. However we

also find that epochs of VAT can vary substantially in their length, with the mean and

median length differing significantly. This is not seen to such an extent in our proposed

models although they incorporate elements of VAT.

As expected, the ladder variants with virtual adversarial noise are faster to train

than with virtual adversarial cost as an additional forward pass is required in the LVAC

models to compute the KL–divergence in the VAT cost. The LVAN models take at least

double the time of the ladder, which again we expect as a second pair of forward- and
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backpropagation is needed for computation of the virtual adversarial perturbation.

6.2 Defending against adversarial attacks
One interpretation of adversarial attacks is taking advantage of a lack of smoothness in

latent space, which allows small perturbations of the input to cause dramatic changes

in final predictions [41]. The similarity of virtual adversarial training to adversarial

training suggests that models trained using VAT could be more robust than otherwise

to adversarial attacks. To test this hypothesis, we measured average error rates of each

of our models on adversarial examples generated using the fast gradient method [12]

with L1, L2, L∞ norms and fixed ε = 0.3. The examples were generated using the

CleverHans library [28].

For each model (VAT, Ladder network, LVAC, LVAC-LW, LVAN, LVAN-LW), we

had five fully trained models for each of the 50-, 100-, and 1000-label training cases.

Each of these models was tested on adversarial example sets. The mean AERs on

adversarial examples generated with the L∞, L1 and L2 norms are reported in Tables

6.4, 6.5, and 6.6 respectively.

For theL∞ norm, where the examples are generated using Equation 3.8, all models

showed a significant difference between their performance on the regular MNIST test

set and their poorer performance on the adversarial examples, as shown in Figure 6.1.

VAT for all sizes of labelled training set outperformed all other models. LVAC and

LVAC-LW, which are both trained with explicit VAT cost terms, did better than the

ladder network, which has no virtual adversarial component, and the LVAN and LVAN-

LW. Although LVAN and LVAN-LW incorporate virtual adversarial perturbations, there

is no penalty for robustness of classification in their training losses.

For the L1 and L2 norm attacks, LVAN-LW had the lowest error rate in the 50-

and 100-label cases, and LVAC-LW the lowest on the 1000-label case. It is surprising

that both LVAN and LVAN-LW outperformed the LVAC and LVAC-LW models as they

are not explicitly penalised with a virtual adversarial cost; it may be that the models

themselves are simply more stable, as we can see in the marginally smaller standard

errors associated with the normal test set errors for LVAN and LVAN-LW relative to

LVAC and LVAC-LW (Table 6.2).

Our proposed models all significantly outperformed VAT. VAT performed poorly
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Figure 6.1: Average Error Rate (%) on adversarial attacks with L∞ norm. Bars show

for each model (subplot) and each size of labelled dataset (colour) the average error

rate (AER) for adversarial examples generated with L∞ norm. Crosses indicate AER

on the normal (non–adversarial) test set.
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in the 50-label case for both norms, which could be due to the high variance and in-

stability of the base VAT models trained on 50 labels, since even their errors on the

regular test set are quite high. VAT also maintained the highest error rates for the 100-

and 1000-label cases, though these were much closer to the corresponding error rates

on the regular test set. The ladder network performed very poorly in the 50-label case,

especially for L2, but does similarly to our VAT-augmented models in the 100- and

1000-label cases.

6.3 Anisotropy of smoothing

[23] and [22] found that the magnitude of the virtual adversarial cost did not signifi-

cantly change with the number of power iterations.

However, the number of power iterations determines the quality of the approxima-

tion of the virtual adversarial perturbation of the dominant eigenvector of the Hessian

(as described in Section 3.2). We also know that isotropic noise, e.g., from random

perturbations, has a regularising effect, and the initialising vector in the power method

is drawn from a unit random normal in each dimension. Thus we hypothesise that for
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Table 6.4: Average error rate on adversarial examples with L∞ norm.

50 labels 100 labels 1000 labels

Model AER (%) SE AER (%) SE AER (%) SE

VAT 22.34 ± 5.25 15.78 ± 1.38 10.62 ± 0.40

Ladder 53.59 ± 6.04 58.31 ± 1.77 53.24 ± 1.71

LVAC 49.03 ± 2.07 48.22 ± 1.01 36.03 ± 1.26

LVAC-LW 34.04 ± 6.01 31.26 ± 1.94 27.32 ± 3.37

LVAN 59.30 ± 4.62 60.35 ± 2.90 39.53 ± 1.13

LVAN-LW 55.52 ± 2.49 59.63 ± 2.14 42.85 ± 2.18

Table 6.5: Average error rate on adversarial examples with L1 norm.

50 labels 100 labels 1000 labels

Model AER (%) SE AER (%) SE AER (%) SE

VAT 9.52 ± 7.59 2.99 ± 1.59 2.41 ± 0.21

Ladder 25.79 ± 5.39 1.55 ± 0.44 1.52 ± 0.10

LVAC 2.88 ± 1.79 1.72 ± 0.12 1.38 ± 0.07

LVAC-LW 4.91 ± 3.74 1.44 ± 0.06 1.18 ± 0.15

LVAN 1.83 ± 0.36 1.38 ± 0.08 1.60 ± 0.13

LVAN-LW 1.60 ± 0.24 1.33 ± 0.09 1.66 ± 0.10

Table 6.6: Average error rate on adversarial examples with L2 norm.

50 labels 100 labels 1000 labels

Model AER (%) SE AER (%) SE AER (%) SE

VAT 9.91 ± 7.54 3.47 ± 1.68 2.58 ± 0.23

Ladder 68.60 ± 6.51 2.31 ± 0.41 2.31 ± 0.22

LVAC 3.33 ± 1.82 2.16 ± 0.14 1.78 ± 0.17

LVAC-LW 4.05 ± 3.70 1.93 ± 0.11 1.58 ± 0.09

LVAN 2.46 ± 0.39 1.95 ± 0.22 2.20 ± 0.05

LVAN-LW 2.41 ± 0.30 1.89 ± 0.16 2.28 ± 0.20
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Figure 6.2: Effect of number of power iterations on average error rate. Average error

rate after 25 training epochs for VAT, LVAC and LVAN models, as a function of num-

ber of power iterations, K, for computation of virtual adversarial perturbations. AER

has been centred across K for each model. Regression lines using local polynomial

regression are shown to illustrate overall trends.
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models that already make use of isotropic noise as regularisation such as the ladder,

and particularly the LVAN model which adds the VA perturbation to Gaussian noise, a

better approximation to the VA direction as obtained by more power iterations will have

a stronger regularising effect from anisotropic smoothing in the adversarial direction;

i.e., more of the performance gain will be due to smoothing in the adversarial direction

as opposed to from isotropic smoothing as would be achieved by random perturbations.

To test this hypothesis we investigated the effect of the number of power iterations

K on the average error rate of VAT, LVAC and LVAN models. For each K, the models

were trained five times using five different seeds fixed across models and K. Due to

the lengthy training time required and many runs (5 × 3 = 15), each model was only

trained for 25 epochs, which is before convergence but was judged to be a reasonable

indicator of final performance.

As shown in Figure 6.2, the results of these experiments suggest that the number of

power iterations does not have a significant effect on the average error rate. There was

high variance between runs, particularly for VAT, which make overall trends difficult to

discern. Contrary to the findings of [22], it appears that for VAT, there may be a small

reduction in AER for K = 3 relative to the K = 1 which was used. For LVAN, it is

possible that the AER decreases with increasingK, though this trend may lie within the
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random variation between runs. To further investigate the hypotheses stated above, it

would be necessary to carry out these experiments again with longer training times for

each run to ensure convergence, and more runs to minimise the variance on the mean.

It should also be noted that the implementation of VAT used for these experiments

included the addition of Gaussian noise at each layer of the feedforward network to

stabilise training; without this noise the effect of increasingK may be easier to discern,

at the cost of even higher variance between runs.
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Chapter 7

Conclusions and further work

7.1 Summary
In this work, we conducted an analysis of the ladder network from [30] and virtual

adversarial training (VAT) from [23, 22] for semi-supervised learning and proposed

four variants of a model applying virtual adversarial training to the ladder network:

ladder with virtual adversarial cost (LVAC), ladder with layer-wise virtual adversarial

cost (LVAC-LW), ladder with virtual adversarial noise (LVAN), and ladder with layer-

wise virtual adversarial noise (LVAN-LW).

Based on the manifold and cluster assumptions of semi-supervised learning [6],

we hypothesised that virtual adversarial training could improve the classification ac-

curacy of ladder network trained in a semi-supervised context. This thesis tested this

hypothesis on the MNIST dataset [18], by training models on training sets consisting of

50, 100 or 1000 labelled examples augmented by the full 60,000 images in the MNIST

training set as unlabelled examples. We measured performance as error rate on the

held-out test set of 10,000 examples.

We found that our models, most significantly LVAN-LW, improved on the perfor-

mance of the ladder for 50 labels and 100 labels, achieving state-of-the-art error rates.

For 1000 labels, both VAT and ladder baselines outperformed our models. This leads us

to believe that the additional regularisation provided by virtual adversarial training to

the ladder network are useful only when the task is sufficiently challenging, suggesting

that we should our test models on more complex datasets.

Additionally we found that our models performed better than the ladder network

on adversarial examples. VAT outperformed our models for L∞ adversarial examples,



but our models, again especially the LVAN-LW model, achieved best performance for

the few-label cases (50 and 100 labels) on L1 and L2-normalised adversarial examples.

7.2 Evaluation
Due to limited time and computing resources, we only very approximately optimised

a limited subset of the hyperparameters of our proposed models. Hyperparameter set-

tings and learning schedules can alter performance significantly, and we cannot be cer-

tain of the results presented in this thesis without further optimisation considering the

magnitude of the performance differences we draw our conclusions from.

We were able to fulfill the research goal of improving semi-supervised learning

performance of the ladder network through augmentation with VAT. However, our ex-

periments to further elucidate the mechanisms which make VAT and the ladder network

using our models, such as the investigation of the effects of the number of power itera-

tions on performance, were not thorough enough to give interpretable results.

7.3 Further work
While we have succeeded in achieving strong performance on semi-supervised learning

benchmarks overall, with particular strength in both accuracy and stability with very

few labelled training data, many potential avenues of further research remain open.

An immediate continuation of this work would be to carry out the experiments in

this work more thoroughly, as we were limited by time and the availability of com-

pute resources. More extensive hyperparameter optimisations should be carried out,

and more training runs using different splits of labelled data are needed to more nar-

rowly bound our performance metrics. Our investigation in this work into the role of

anisotropic smoothing in semi-supervised learning performance was particularly lim-

ited, as we were unable to extend the experiments to the LVAC-LW and LVAN-LW

models. Additionally, the experiments on adversarial attacks in this paper only used

a fixed size of adversarial perturbation, which is a variable that could have significant

influence on the relative performance of the models compared.

Another straightforward extension would be to combine adversarial and virtual

adversarial training with the ladder, using virtual adversarial costs or perturbations on

unlabelled examples as we have done in this work, and additionally using adversarial
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training or perturbations on labelled examples.

A further natural application would be to test our models on more challenging

datasets such as SVHN and CIFAR-10, which are increasingly used as the benchmarks

of choice for semi-supervised learning due to the saturation of performance on MNIST.

This would allow comparisons with methods such as temporal ensembling and the

Π model from [17] and the stochastic augmentation methods of [34], which like the

ladder and VAT are relatively fast-but-powerful algorithms particularly adapted to semi-

supervised learning. Testing on more complex images would almost certainly require

implementing our models using a convolutional encoder/decoder structure.

The datasets SVHN and CIFAR-10 would be more challenging than MNIST as

they have more colour channels and more varied images, but they are also 10-way

classification problems like MNIST. An even more challenging task would be semi-

supervised learning on the 100-class CIFAR-100 dataset [16], which has to date only

been attempted by Laine and Aila with temporal ensembling [17]. As our models

proved to be particularly effective in the most difficult of our tasks (fifty labelled exam-

ples, resisting adversarial attacks), we may see more strengths of our proposed models

on these harder datasets.

In [24], Moosavi-Dezfooli et al. recently proposed an algorithm to generate uni-

versal adversarial perturbations (UAPs): perturbations engineered for a particular net-

work architecture that have an adversarial effect on a majority of input images. Where

adversarial perturbations are computed on input-output pairs, and virtual adversarial

perturbations are computed on inputs, UAPs are computed for architectures. Aug-

menting the adversarial components of our proposed models with UAPs could improve

performance; replacing the adversarial components with UAP may increase computa-

tional efficiency at a small accuracy cost. These hypotheses link back to the theory of

smoothing the manifold for semi-supervised learning.
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Appendix A

Hyperparameter settings

LVAC

No. labels λ(0) λ(1) λ(≥2) ε

50 1504 16.15 0.0381 0.0733

100 1966 14.20 0.1563 0.0731

1000 3883 12.35 0.0539 2.5206

LVAC-LW

No. labels λ(0) λ(1) λ(≥2) ε(0) ε(1) ε(≥2)

50 1000 10.00 0.1000 1.0000 0.1000 1.00 ×10−3

100 1966 14.20 0.1563 0.0731 0.4822 1.402 ×10−3

1000 3883 12.35 0.0539 2.5206 0.0143 6.002 ×10−4

LVAN

No. labels λ(0) λ(1) λ(≥2) ε

50 1504 16.15 0.0381 0.0733

100 1966 14.20 0.1563 0.0731

1000 3883 12.35 0.0539 2.5206



LVAN-LW

No. labels λ(0) λ(1) λ(≥2) ε(0) ε(1) ε(≥2)

50 1504 16.15 0.0381 0.0733 0.3897 8.372 ×10−2

100 1966 14.20 0.1563 0.0731 0.4822 1.402 ×10−3

1000 3883 12.35 0.0539 2.5206 0.0143 6.002 ×10−4

Ladder

No. labels λ(0) λ(1) λ(≥2)

50 1504 16.15 0.0381

100 1966 14.20 0.1563

1000 3883 12.35 0.0539

VAT

No. labels ε

50 5.0

100 5.0

1000 2.5
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